Theory Qual

Spring 2018

Directions. You have 4 hours. There are 4 problems. Please do them all. If you cannot completely solve a problem, we will award partial credit for work that is correct and relevant to the question.

1. (a) Show by examples that both are possible, for non-regular languages L: L^* is regular, and L^* is not regular.

 (b) One version of the pumping lemma for regular languages goes as follows.

 PL: Let L be a regular language. Then, any sufficiently long $x \in L$ can be factored as uvw, where

 i) $|v| > 0$ and

 ii) $uv^kw \in L$, for all $k \geq 0$.

 Find a nonregular language L that satisfies PL.

2. Let X be a finite set with n elements, and f a function taking X to X.

 (a) We seek a largest $S \subseteq X$ on which f is 1-1, that is, for all $x, y \in S$ with $x \neq y$, we have $f(x) \neq f(y)$. Design a linear time algorithm to find such a set.

 (b) Let us impose the additional constraint that f maps S to itself. Here is one procedure for finding a largest such S.

 Identify all elements of X that have no preimage.

 (If this set is empty, the algorithm stops and returns $S = X$.)

 Remove these and recursively process the smaller set X'.

 Suppose that f is chosen randomly and uniformly from among the n^n possibilities. Observe that the first round removes, in expectation, a constant number of elements. One can ask if this behavior continues. To treat this precisely, prove or disprove the following assertion: the expected number of rounds is $O(\log n)$.

3. This problem is concerned with graph isomorphism. Assume all graphs have vertex set \{1, \ldots, n\} for some \(n\).

(a) Let \(L\) denote the set
\[
\{(G_0, G_1, \varphi) \mid \varphi : V(G_0) \to V(G_1) \text{ is the lexicographically first isomorphism from } G_0 \text{ to } G_1\}
\]
Give an interactive proof system for \(L\).

(b) Describe the steps you would take to adapt this interactive proof to an AM protocol.

4. Given a graph \(G = (V, E)\), an edge dominating set is a subset of edges, \(F \subset E\), such that for every edge \(e \in E \setminus F\) there exists at least one edge \(e' \in F\) such that \(e\) and \(e'\) share a vertex. In other words, \(F\) covers \(E\). The goal in this problem is to find the smallest such \(F\).

(a) Prove that every maximal matching is an edge dominating set, and that there always exists a minimum edge dominating set that is a maximal matching.

(b) Give a polynomial time algorithm for finding a minimum maximal matching when the graph \(G\) is a tree.

(c) Give a polynomial time 2-approximation for finding a minimum edge dominating set in general graphs.